pydantic_ai.ext
TemporalAgent
Bases: WrapperAgent[AgentDepsT, OutputDataT]
Source code in pydantic_ai_slim/pydantic_ai/ext/temporal/_agent.py
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 |
|
__init__
__init__(
wrapped: AbstractAgent[AgentDepsT, OutputDataT],
*,
activity_config: ActivityConfig | None = None,
model_activity_config: ActivityConfig | None = None,
toolset_activity_config: (
dict[str, ActivityConfig] | None
) = None,
tool_activity_config: (
dict[
str, dict[str, ActivityConfig | Literal[False]]
]
| None
) = None,
run_context_type: type[
TemporalRunContext
] = TemporalRunContext,
temporalize_toolset_func: Callable[
[
AbstractToolset[Any],
str,
ActivityConfig,
dict[str, ActivityConfig | Literal[False]],
type[TemporalRunContext],
],
AbstractToolset[Any],
] = temporalize_toolset
)
Wrap an agent to make it compatible with Temporal.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
wrapped
|
AbstractAgent[AgentDepsT, OutputDataT]
|
The agent to wrap. |
required |
activity_config
|
ActivityConfig | None
|
The Temporal activity config to use. |
None
|
model_activity_config
|
ActivityConfig | None
|
The Temporal activity config to use for model requests. |
None
|
toolset_activity_config
|
dict[str, ActivityConfig] | None
|
The Temporal activity config to use for specific toolsets identified by ID. |
None
|
tool_activity_config
|
dict[str, dict[str, ActivityConfig | Literal[False]]] | None
|
The Temporal activity config to use for specific tools identified by toolset ID and tool name. |
None
|
run_context_type
|
type[TemporalRunContext]
|
The type of run context to use to serialize and deserialize the run context. |
TemporalRunContext
|
temporalize_toolset_func
|
Callable[[AbstractToolset[Any], str, ActivityConfig, dict[str, ActivityConfig | Literal[False]], type[TemporalRunContext]], AbstractToolset[Any]]
|
The function to use to prepare the toolsets for Temporal. |
temporalize_toolset
|
Source code in pydantic_ai_slim/pydantic_ai/ext/temporal/_agent.py
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 |
|
run
async
run(
user_prompt: str | Sequence[UserContent] | None = None,
*,
output_type: None = None,
message_history: list[ModelMessage] | None = None,
model: Model | KnownModelName | str | None = None,
deps: AgentDepsT = None,
model_settings: ModelSettings | None = None,
usage_limits: UsageLimits | None = None,
usage: Usage | None = None,
infer_name: bool = True,
toolsets: (
Sequence[AbstractToolset[AgentDepsT]] | None
) = None,
event_stream_handler: (
EventStreamHandler[AgentDepsT] | None
) = None
) -> AgentRunResult[OutputDataT]
run(
user_prompt: str | Sequence[UserContent] | None = None,
*,
output_type: OutputSpec[RunOutputDataT],
message_history: list[ModelMessage] | None = None,
model: Model | KnownModelName | str | None = None,
deps: AgentDepsT = None,
model_settings: ModelSettings | None = None,
usage_limits: UsageLimits | None = None,
usage: Usage | None = None,
infer_name: bool = True,
toolsets: (
Sequence[AbstractToolset[AgentDepsT]] | None
) = None,
event_stream_handler: (
EventStreamHandler[AgentDepsT] | None
) = None
) -> AgentRunResult[RunOutputDataT]
run(
user_prompt: str | Sequence[UserContent] | None = None,
*,
output_type: OutputSpec[RunOutputDataT] | None = None,
message_history: list[ModelMessage] | None = None,
model: Model | KnownModelName | str | None = None,
deps: AgentDepsT = None,
model_settings: ModelSettings | None = None,
usage_limits: UsageLimits | None = None,
usage: Usage | None = None,
infer_name: bool = True,
toolsets: (
Sequence[AbstractToolset[AgentDepsT]] | None
) = None,
event_stream_handler: (
EventStreamHandler[AgentDepsT] | None
) = None,
**_deprecated_kwargs: Never
) -> AgentRunResult[Any]
Run the agent with a user prompt in async mode.
This method builds an internal agent graph (using system prompts, tools and result schemas) and then runs the graph to completion. The result of the run is returned.
Example:
from pydantic_ai import Agent
agent = Agent('openai:gpt-4o')
async def main():
agent_run = await agent.run('What is the capital of France?')
print(agent_run.output)
#> The capital of France is Paris.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
user_prompt
|
str | Sequence[UserContent] | None
|
User input to start/continue the conversation. |
None
|
output_type
|
OutputSpec[RunOutputDataT] | None
|
Custom output type to use for this run, |
None
|
message_history
|
list[ModelMessage] | None
|
History of the conversation so far. |
None
|
model
|
Model | KnownModelName | str | None
|
Optional model to use for this run, required if |
None
|
deps
|
AgentDepsT
|
Optional dependencies to use for this run. |
None
|
model_settings
|
ModelSettings | None
|
Optional settings to use for this model's request. |
None
|
usage_limits
|
UsageLimits | None
|
Optional limits on model request count or token usage. |
None
|
usage
|
Usage | None
|
Optional usage to start with, useful for resuming a conversation or agents used in tools. |
None
|
infer_name
|
bool
|
Whether to try to infer the agent name from the call frame if it's not set. |
True
|
toolsets
|
Sequence[AbstractToolset[AgentDepsT]] | None
|
Optional additional toolsets for this run. |
None
|
event_stream_handler
|
EventStreamHandler[AgentDepsT] | None
|
Optional event stream handler to use for this run. |
None
|
Returns:
Type | Description |
---|---|
AgentRunResult[Any]
|
The result of the run. |
Source code in pydantic_ai_slim/pydantic_ai/ext/temporal/_agent.py
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
|
run_sync
run_sync(
user_prompt: str | Sequence[UserContent] | None = None,
*,
output_type: None = None,
message_history: list[ModelMessage] | None = None,
model: Model | KnownModelName | str | None = None,
deps: AgentDepsT = None,
model_settings: ModelSettings | None = None,
usage_limits: UsageLimits | None = None,
usage: Usage | None = None,
infer_name: bool = True,
toolsets: (
Sequence[AbstractToolset[AgentDepsT]] | None
) = None,
event_stream_handler: (
EventStreamHandler[AgentDepsT] | None
) = None
) -> AgentRunResult[OutputDataT]
run_sync(
user_prompt: str | Sequence[UserContent] | None = None,
*,
output_type: OutputSpec[RunOutputDataT],
message_history: list[ModelMessage] | None = None,
model: Model | KnownModelName | str | None = None,
deps: AgentDepsT = None,
model_settings: ModelSettings | None = None,
usage_limits: UsageLimits | None = None,
usage: Usage | None = None,
infer_name: bool = True,
toolsets: (
Sequence[AbstractToolset[AgentDepsT]] | None
) = None,
event_stream_handler: (
EventStreamHandler[AgentDepsT] | None
) = None
) -> AgentRunResult[RunOutputDataT]
run_sync(
user_prompt: str | Sequence[UserContent] | None = None,
*,
output_type: OutputSpec[RunOutputDataT] | None = None,
message_history: list[ModelMessage] | None = None,
model: Model | KnownModelName | str | None = None,
deps: AgentDepsT = None,
model_settings: ModelSettings | None = None,
usage_limits: UsageLimits | None = None,
usage: Usage | None = None,
infer_name: bool = True,
toolsets: (
Sequence[AbstractToolset[AgentDepsT]] | None
) = None,
event_stream_handler: (
EventStreamHandler[AgentDepsT] | None
) = None,
**_deprecated_kwargs: Never
) -> AgentRunResult[Any]
Synchronously run the agent with a user prompt.
This is a convenience method that wraps self.run
with loop.run_until_complete(...)
.
You therefore can't use this method inside async code or if there's an active event loop.
Example:
from pydantic_ai import Agent
agent = Agent('openai:gpt-4o')
result_sync = agent.run_sync('What is the capital of Italy?')
print(result_sync.output)
#> The capital of Italy is Rome.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
user_prompt
|
str | Sequence[UserContent] | None
|
User input to start/continue the conversation. |
None
|
output_type
|
OutputSpec[RunOutputDataT] | None
|
Custom output type to use for this run, |
None
|
message_history
|
list[ModelMessage] | None
|
History of the conversation so far. |
None
|
model
|
Model | KnownModelName | str | None
|
Optional model to use for this run, required if |
None
|
deps
|
AgentDepsT
|
Optional dependencies to use for this run. |
None
|
model_settings
|
ModelSettings | None
|
Optional settings to use for this model's request. |
None
|
usage_limits
|
UsageLimits | None
|
Optional limits on model request count or token usage. |
None
|
usage
|
Usage | None
|
Optional usage to start with, useful for resuming a conversation or agents used in tools. |
None
|
infer_name
|
bool
|
Whether to try to infer the agent name from the call frame if it's not set. |
True
|
toolsets
|
Sequence[AbstractToolset[AgentDepsT]] | None
|
Optional additional toolsets for this run. |
None
|
event_stream_handler
|
EventStreamHandler[AgentDepsT] | None
|
Optional event stream handler to use for this run. |
None
|
Returns:
Type | Description |
---|---|
AgentRunResult[Any]
|
The result of the run. |
Source code in pydantic_ai_slim/pydantic_ai/ext/temporal/_agent.py
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 |
|
run_stream
async
run_stream(
user_prompt: str | Sequence[UserContent] | None = None,
*,
output_type: None = None,
message_history: list[ModelMessage] | None = None,
model: Model | KnownModelName | str | None = None,
deps: AgentDepsT = None,
model_settings: ModelSettings | None = None,
usage_limits: UsageLimits | None = None,
usage: Usage | None = None,
infer_name: bool = True,
toolsets: (
Sequence[AbstractToolset[AgentDepsT]] | None
) = None,
event_stream_handler: (
EventStreamHandler[AgentDepsT] | None
) = None
) -> AbstractAsyncContextManager[
StreamedRunResult[AgentDepsT, OutputDataT]
]
run_stream(
user_prompt: str | Sequence[UserContent] | None = None,
*,
output_type: OutputSpec[RunOutputDataT],
message_history: list[ModelMessage] | None = None,
model: Model | KnownModelName | str | None = None,
deps: AgentDepsT = None,
model_settings: ModelSettings | None = None,
usage_limits: UsageLimits | None = None,
usage: Usage | None = None,
infer_name: bool = True,
toolsets: (
Sequence[AbstractToolset[AgentDepsT]] | None
) = None,
event_stream_handler: (
EventStreamHandler[AgentDepsT] | None
) = None
) -> AbstractAsyncContextManager[
StreamedRunResult[AgentDepsT, RunOutputDataT]
]
run_stream(
user_prompt: str | Sequence[UserContent] | None = None,
*,
output_type: OutputSpec[RunOutputDataT] | None = None,
message_history: list[ModelMessage] | None = None,
model: Model | KnownModelName | str | None = None,
deps: AgentDepsT = None,
model_settings: ModelSettings | None = None,
usage_limits: UsageLimits | None = None,
usage: Usage | None = None,
infer_name: bool = True,
toolsets: (
Sequence[AbstractToolset[AgentDepsT]] | None
) = None,
event_stream_handler: (
EventStreamHandler[AgentDepsT] | None
) = None,
**_deprecated_kwargs: Never
) -> AsyncIterator[StreamedRunResult[AgentDepsT, Any]]
Run the agent with a user prompt in async mode, returning a streamed response.
Example:
from pydantic_ai import Agent
agent = Agent('openai:gpt-4o')
async def main():
async with agent.run_stream('What is the capital of the UK?') as response:
print(await response.get_output())
#> The capital of the UK is London.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
user_prompt
|
str | Sequence[UserContent] | None
|
User input to start/continue the conversation. |
None
|
output_type
|
OutputSpec[RunOutputDataT] | None
|
Custom output type to use for this run, |
None
|
message_history
|
list[ModelMessage] | None
|
History of the conversation so far. |
None
|
model
|
Model | KnownModelName | str | None
|
Optional model to use for this run, required if |
None
|
deps
|
AgentDepsT
|
Optional dependencies to use for this run. |
None
|
model_settings
|
ModelSettings | None
|
Optional settings to use for this model's request. |
None
|
usage_limits
|
UsageLimits | None
|
Optional limits on model request count or token usage. |
None
|
usage
|
Usage | None
|
Optional usage to start with, useful for resuming a conversation or agents used in tools. |
None
|
infer_name
|
bool
|
Whether to try to infer the agent name from the call frame if it's not set. |
True
|
toolsets
|
Sequence[AbstractToolset[AgentDepsT]] | None
|
Optional additional toolsets for this run. |
None
|
event_stream_handler
|
EventStreamHandler[AgentDepsT] | None
|
Optional event stream handler to use for this run. It will receive all the events up until the final result is found, which you can then read or stream from inside the context manager. |
None
|
Returns:
Type | Description |
---|---|
AsyncIterator[StreamedRunResult[AgentDepsT, Any]]
|
The result of the run. |
Source code in pydantic_ai_slim/pydantic_ai/ext/temporal/_agent.py
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 |
|
iter
async
iter(
user_prompt: str | Sequence[UserContent] | None = None,
*,
output_type: None = None,
message_history: list[ModelMessage] | None = None,
model: Model | KnownModelName | str | None = None,
deps: AgentDepsT = None,
model_settings: ModelSettings | None = None,
usage_limits: UsageLimits | None = None,
usage: Usage | None = None,
infer_name: bool = True,
toolsets: (
Sequence[AbstractToolset[AgentDepsT]] | None
) = None,
**_deprecated_kwargs: Never
) -> AbstractAsyncContextManager[
AgentRun[AgentDepsT, OutputDataT]
]
iter(
user_prompt: str | Sequence[UserContent] | None = None,
*,
output_type: OutputSpec[RunOutputDataT],
message_history: list[ModelMessage] | None = None,
model: Model | KnownModelName | str | None = None,
deps: AgentDepsT = None,
model_settings: ModelSettings | None = None,
usage_limits: UsageLimits | None = None,
usage: Usage | None = None,
infer_name: bool = True,
toolsets: (
Sequence[AbstractToolset[AgentDepsT]] | None
) = None,
**_deprecated_kwargs: Never
) -> AbstractAsyncContextManager[
AgentRun[AgentDepsT, RunOutputDataT]
]
iter(
user_prompt: str | Sequence[UserContent] | None = None,
*,
output_type: OutputSpec[RunOutputDataT] | None = None,
message_history: list[ModelMessage] | None = None,
model: Model | KnownModelName | str | None = None,
deps: AgentDepsT = None,
model_settings: ModelSettings | None = None,
usage_limits: UsageLimits | None = None,
usage: Usage | None = None,
infer_name: bool = True,
toolsets: (
Sequence[AbstractToolset[AgentDepsT]] | None
) = None,
**_deprecated_kwargs: Never
) -> AsyncIterator[AgentRun[AgentDepsT, Any]]
A contextmanager which can be used to iterate over the agent graph's nodes as they are executed.
This method builds an internal agent graph (using system prompts, tools and output schemas) and then returns an
AgentRun
object. The AgentRun
can be used to async-iterate over the nodes of the graph as they are
executed. This is the API to use if you want to consume the outputs coming from each LLM model response, or the
stream of events coming from the execution of tools.
The AgentRun
also provides methods to access the full message history, new messages, and usage statistics,
and the final result of the run once it has completed.
For more details, see the documentation of AgentRun
.
Example:
from pydantic_ai import Agent
agent = Agent('openai:gpt-4o')
async def main():
nodes = []
async with agent.iter('What is the capital of France?') as agent_run:
async for node in agent_run:
nodes.append(node)
print(nodes)
'''
[
UserPromptNode(
user_prompt='What is the capital of France?',
instructions=None,
instructions_functions=[],
system_prompts=(),
system_prompt_functions=[],
system_prompt_dynamic_functions={},
),
ModelRequestNode(
request=ModelRequest(
parts=[
UserPromptPart(
content='What is the capital of France?',
timestamp=datetime.datetime(...),
)
]
)
),
CallToolsNode(
model_response=ModelResponse(
parts=[TextPart(content='The capital of France is Paris.')],
usage=Usage(
requests=1, request_tokens=56, response_tokens=7, total_tokens=63
),
model_name='gpt-4o',
timestamp=datetime.datetime(...),
)
),
End(data=FinalResult(output='The capital of France is Paris.')),
]
'''
print(agent_run.result.output)
#> The capital of France is Paris.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
user_prompt
|
str | Sequence[UserContent] | None
|
User input to start/continue the conversation. |
None
|
output_type
|
OutputSpec[RunOutputDataT] | None
|
Custom output type to use for this run, |
None
|
message_history
|
list[ModelMessage] | None
|
History of the conversation so far. |
None
|
model
|
Model | KnownModelName | str | None
|
Optional model to use for this run, required if |
None
|
deps
|
AgentDepsT
|
Optional dependencies to use for this run. |
None
|
model_settings
|
ModelSettings | None
|
Optional settings to use for this model's request. |
None
|
usage_limits
|
UsageLimits | None
|
Optional limits on model request count or token usage. |
None
|
usage
|
Usage | None
|
Optional usage to start with, useful for resuming a conversation or agents used in tools. |
None
|
infer_name
|
bool
|
Whether to try to infer the agent name from the call frame if it's not set. |
True
|
toolsets
|
Sequence[AbstractToolset[AgentDepsT]] | None
|
Optional additional toolsets for this run. |
None
|
Returns:
Type | Description |
---|---|
AsyncIterator[AgentRun[AgentDepsT, Any]]
|
The result of the run. |
Source code in pydantic_ai_slim/pydantic_ai/ext/temporal/_agent.py
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 |
|
override
override(
*,
deps: AgentDepsT | Unset = UNSET,
model: Model | KnownModelName | str | Unset = UNSET,
toolsets: (
Sequence[AbstractToolset[AgentDepsT]] | Unset
) = UNSET,
tools: (
Sequence[
Tool[AgentDepsT]
| ToolFuncEither[AgentDepsT, ...]
]
| Unset
) = UNSET
) -> Iterator[None]
Context manager to temporarily override agent dependencies, model, toolsets, or tools.
This is particularly useful when testing. You can find an example of this here.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
deps
|
AgentDepsT | Unset
|
The dependencies to use instead of the dependencies passed to the agent run. |
UNSET
|
model
|
Model | KnownModelName | str | Unset
|
The model to use instead of the model passed to the agent run. |
UNSET
|
toolsets
|
Sequence[AbstractToolset[AgentDepsT]] | Unset
|
The toolsets to use instead of the toolsets passed to the agent constructor and agent run. |
UNSET
|
tools
|
Sequence[Tool[AgentDepsT] | ToolFuncEither[AgentDepsT, ...]] | Unset
|
The tools to use instead of the tools registered with the agent. |
UNSET
|
Source code in pydantic_ai_slim/pydantic_ai/ext/temporal/_agent.py
618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 |
|
LogfirePlugin
Bases: Plugin
Temporal client plugin for Logfire.
Source code in pydantic_ai_slim/pydantic_ai/ext/temporal/_logfire.py
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
|
PydanticAIPlugin
Bases: Plugin
, Plugin
Temporal client and worker plugin for Pydantic AI.
Source code in pydantic_ai_slim/pydantic_ai/ext/temporal/__init__.py
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
|
AgentPlugin
Bases: Plugin
Temporal worker plugin for a specific Pydantic AI agent.
Source code in pydantic_ai_slim/pydantic_ai/ext/temporal/__init__.py
68 69 70 71 72 73 74 75 76 77 78 |
|
tool_from_langchain
tool_from_langchain(langchain_tool: LangChainTool) -> Tool
Creates a Pydantic AI tool proxy from a LangChain tool.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
langchain_tool
|
LangChainTool
|
The LangChain tool to wrap. |
required |
Returns:
Type | Description |
---|---|
Tool
|
A Pydantic AI tool that corresponds to the LangChain tool. |
Source code in pydantic_ai_slim/pydantic_ai/ext/langchain.py
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
|
LangChainToolset
Bases: FunctionToolset
A toolset that wraps LangChain tools.
Source code in pydantic_ai_slim/pydantic_ai/ext/langchain.py
67 68 69 70 71 |
|
tool_from_aci
Creates a Pydantic AI tool proxy from an ACI.dev function.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
aci_function
|
str
|
The ACI.dev function to wrap. |
required |
linked_account_owner_id
|
str
|
The ACI user ID to execute the function on behalf of. |
required |
Returns:
Type | Description |
---|---|
Tool
|
A Pydantic AI tool that corresponds to the ACI.dev tool. |
Source code in pydantic_ai_slim/pydantic_ai/ext/aci.py
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
|
ACIToolset
Bases: FunctionToolset
A toolset that wraps ACI.dev tools.
Source code in pydantic_ai_slim/pydantic_ai/ext/aci.py
70 71 72 73 74 75 76 |
|